Characterisations for uniform amenability
نویسندگان
چکیده
In this paper, we provide several characterisations for uniform amenability concerning a family of finitely generated groups. More precisely, show that the Hulanicki–Reiter condition can be weakened in directions, including cardinalities supports and certain operator norms.
منابع مشابه
The operator amenability of uniform algebras
We prove a quantized version of a theorem by M. V. Shĕınberg: A uniform algebra equipped with its canonical, i.e. minimal, operator space structure is operator amenable if and only if it is a commutative C∗-algebra.
متن کاملUniform Non–amenability of Free Burnside Groups
The aim of the present note is to show that free Burnside groups of sufficiently large odd exponent are non–amenable in a certain strong sense, more precisely, their left regular representations are isolated from the trivial representation uniformly on finite generating sets. This result is applied to the solution of a strong version of the von Neumann – Day problem concerning amenability of gr...
متن کاملAmenability for dual Banach algebras
We define a Banach algebra A to be dual if A = (A∗) ∗ for a closed submodule A∗ of A∗. The class of dual Banach algebras includes all W ∗-algebras, but also all algebras M(G) for locally compact groups G, all algebras L(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception...
متن کاملModule Amenability for Semigroup Algebras
We extend the concept of amenability of a Banach algebra A to the case that there is an extra A -module structure on A, and show that when S is an inverse semigroup with subsemigroup E of idempotents, then A = l(S) as a Banach module over A= l(E) is module amenable iff S is amenable. When S is a discrete group, l(E) = C and this is just the celebrated Johnson’s theorem.
متن کاملAmenability Constants for Semilattice Algebras
Abstract. For any finite unital commutative idempotent semigroup S, a unital semilattice, we show how to compute the amenability constant of its semigroup algebra l(S), which is always of the form 4n+1. We then show that these give lower bounds to amenability constants of certain Banach algebras graded over semilattices. Our theory applies to certain natural subalgebras of Fourier-Stieltjes alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indagationes Mathematicae
سال: 2023
ISSN: ['0019-3577', '1872-6100']
DOI: https://doi.org/10.1016/j.indag.2023.06.003